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INVERSE SCATTERING THEORY AND
ALMOST PERIODIC MEDIA

I. INTRODUCTION

A fundamental problem in physics is the investigation and description of an unknown object by
probing or sensing with electromagnetic waves. Inverse scattering theory is concerned with the analyti-
cal and computational methods for solving this general problem. The physical model that will be con-
sidered in this report is the determination of the effective permittivity and density distribution of an

inhomogeneous region by using the information contained in scattered electromagnetic waves.

Here we investigate the connection between two relatively diverse areas of mathematical physics,
namely, one-dimensional inverse scattering theory and the theory of almost periodic functions. Our
eventual objective is to determine an area of commonality and, more specifically, to discover inverse
scattering methods which can be applied to waves scattered or reflected by almost periodic media. This
communication serves the heuristic purpose of investigating the feasibility of our method, first sug- .1
gested in II]; the deeper mathematical questions will be addressed in a subsequent paper.

In the abstract setting of Sabatier [2), inverse scattering theory provides the mathematical
methods for calculating a set C of physical parameters for a set S of scattering data. The idealized phy-
sical model that we wilt use is shown in Fig. 1. In this idealized model the set S consists of the incident
plane wave ek' and the reflected wave r(k)e-

Ax, where k is the free-space wave number. The set C
consists of 1A0, the permeability of free space, and e(k, x), the permittivity. The inverse scattering
problem here is to determine the unknown permittivity e(k, x) from the reflection coefficient r(k). In
general, inverse problems start with limited a priori knowledge of the set C for the inhomogeneous
region; this a priori knowledge and the scattering data that are available will suggest the particular inver-
sion method that should be used and the physical parameters that can be reconstructed. In contrast 4

direct problems start with complete knowledge of the set of physical parameters and seek to determine
the scattering data. Clearly most practical problems will use a hybrid approach. For example, an
inverse problem has traditionally been solved by the iterative solution of the relevant direct problem
until the calculated scattering data agree with the experimental data.

The mathematical foundation for one-dimensional inverse scattering theory was laid by the Soviet
mathematicians Gel'fand, Levitan and Marchenko. circa 1950 [3,41, for use in quantum mechanical
problems. Subsequent work by Kay and Moses [5,71, and Newton [61 in the United States extended
the availability of these results and expanded the theory to include the electromagnetic problem. Of
particular interest is the treatment by Kay (51 in which several examples display the usefulness of the
Gel'fand-Levitan-Marchenko theory. Much of the initial work [5,7,8.9,101 emphasized exact, closed-
form solutions to the problem when the scattered data were represented by rational functions. Numeri-
cal 111,12,131 and approximate 114,15] solutions provided additional understanding of this problem. A
recent summary of the general status and applications of several inverse scattering methods can be
found in a recent special issue of the IEEE Transactions on Antennas and Propagation [161 and in a
future issue of Radio Science [171.

Manuscript approved November 1. 1982.



The theory of almost periodic functions has its origins in the work of Bohr [181 and Besicovitch
[191, performed during the 1920's and 1930's. Important contributions were subsequently made by
Wiener [201 and others 1211. More recently, these fanctions have been applied to direct problems in - 5

"z mechanics [22,231 and electromagnetic wave propagation [24,25,26,271. These functions are useful in
describing certain types of imperfections in periodic structures and so may play a role in solid state phy-
sics and in the design of optical and microwave devices.

Here we investigate several methods to determine the profile of a structure where we have the
a priori knowledge that this structure is described by an almost periodic function. Trubowitz [281 has -e
presented the inverse scattering theory for periodic potentials. After reviewing the necessary facts
needed from inverse scattering theory, the theory of almost periodic functions and reflection from
almost periodic media, we use several examples to illustrate the application of inverse scattering theory
to reflection from almost periodic media. Finally, we give a brief discussion and several general conclu-
sions resulting from our investigation.

II. MATHEMATICAL BACKGROUND

A. Inverse Scattering

In a source-free in homogeneous region the electric and magnetic field vectors E and H satisfy the
time-harmonic differential equations S

V 2 E + VE k 2 EE = 0. (1)

7 2H+ -_ x V x H+ k 2EH -=0, (2)

In the physical model of Fig. 1, we have assumed that the plane-polarized electromagnetic field is nor-
mally incident on a semi-infinite inhomogeneous region whose permittivity e(k, x) is assumed to obey
the dispersion relation

eo (I--L qx)) (x >0

e(k. x) - (x)

o(X < 0)
where e0 is the permittivity of free space, so that the behavior of the time-harmonic transverse electric
wave amplitude u (k. x) is described by the differential equation

d"- u(k, x) +11 -I - q(x) u(k, x)-0. (4) ]

The transver-e magnetic field case can be transformed to a differential equation with the same func-
tional form. Here q(x) is a profile function related to the density of the unknown region, where q(x)
is assumed to be piecewise continuous. Then r(k) will be an analytic function of k so that the conser-
vation of energy condition is expressed as U

I r(k)12 < 1.(5)

A physical description of the inverse scattering procedure [71 is obtained by using the Fourier

transform of the differential Eq. (4),

a U(x. a)2- U(x. 1)- q(x) U(x, t). (6) -
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The incident plane wave is represented as an incident impulse

Ui,,(x, ) = 8(x - t) (7)

which produces a reflected transient

+ (-. 0 r(k)e -"k lx  dk - i r,,e " -1 (8)

where the r, in the second term are the residues at the poles, if any, of r(k) on the positive imaginary
k-axis. Because of causality, we must have

R(x+t=0 (x < ) (9)

i.e., a reflected transient is not produced until the incident pulse has interacted with the medium. It is
possible (see, e.g., Kay [5,71) to relate the wave amplitude, U(x, ), in the inhomogeneous region,
x > 0, with the wave amplitude in the free space region, Up(x, t). x < 0, by the transformation

U(x, ) = Uo(x, ) + f K(x, z) Uo (z, t)dz (10)

where

Uo(x, t) =8(x - t) + R(x +t) (x < 0).

From physical considerations we know that U(x, t) is a right-moving transient that is,

U(x, )= 0 (x > t) (11)

so that U(x, ) depends only on the medium traversed by U0 (x, ) up to time t. Therefore,
K(x, z) - 0 for z > x. Substituting the expression for the field in the free-space, Uj(x. t), gives the
integral equation

R(x, ) + K(x, ) + f K(x, z) R(z + ) dz = 0 (x > ) (12)

which is Kay's version of the Gel'fand-Levitan-Marchenko integral equation and is to be solved for the
function K(x, t). Conditions of K(x, ) are found by substituting the expression (10) for U(x, t) in
the differential (Eq. (6)); the function K(x, () satisfies the same differential equation as U(x, t),

a2 82
x 2 K(x, ) - -t- K(x, t) - q(x) K(x, ), (13)

subject to the conditions

K(x, -x) = 0 (14)

and
ddx K(x, x) - 2 q(x). (15). "!

From condition (15) we see that the inverse scattering problem is solved for q(x) if we can solve the
integral equation (12) that relates the unknown function K (x, t) with the scattering data R (x + ).

Thus the solution of the one-dimensional inverse scattering problem that we are investigating has
been reduced to the solution of Eq. (12) together with the condition (15). Several exact and approxi-
mate methods of solving Eq. (12) have been reviewed by Jordan 1291; the most important for obtaining
closed-form solutions useful for engineering applications is that of Kay (71, where r(k) is a rational
function of the wavenumber k,

(k - 1 ) (k - /2) ....
r(k) - ro (k- ki) (k- k2).... (16)
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where ki , k2, ... are the poles and z l , A 2 are the zeros of r(k) in the complex k-plane. Exam-
pies of these solutions have been given by Jordan et al. [9,10,111 for several pole-zero configurations;
examples of numerical and approximate solutions have been given by Jaggard et al 113,15] and - S
Krueger [121.

B. Almost Periodic Functions

In the restricted sense in which we use it here, an almost periodic function is one which possesses
a discrete or line spectrum. This implies that such a function f(x) can be written in a generalized
Fourier series

f(x) = a, eiKX (17)

where K,, is the wavenumber or spatial frequency of the nth harmonic and a, is its amplitude. (Often
we will refer to K, as the tone frequency and a, as the tone strength.) This equation can be inverted to "
produce the harmonic amplitudes.

a- 2lim--  fW JS(x e dx. (18)anX

Clearly, Eq. (17) represents a periodic function if only one tone is present or if all of the tone frequen-
cies are commensurable. In this case Eq. (17) and (18) become the usual expressions for the Fourier -.

series and Fourier inversion formula, respectively.

Although a!most periodic functions do not possess a period, as noted above, they do possess an
almost period or translation number r such that

I f(x + -) - f(x)I < o*. (19)
S

where r - T(a-). This relation provides an alternative definition to the more restrictive one expressed
by Eq. (17). Another property of interest is the Parseval relation expressed as

lim f " If(x)1 2 dx - _ IaP. (20)

2X IfW

These and other characteristics can be shown from the defining equations (Eqs. (17) and (19)) and can
be found in the literature 118,19,20,231.

C. Reflection from Almost Periodic Media

If the potential function q(x) is almost periodic an approximate theory can be developed for the
reflection coefficient using the method developed in [26,27,301. Here we examine the three tone case
described by

22 cos[gK- (0 x I)
q(x) - 0 (21)

(x < 0. x > 1)

This function represents a modulated periodic structure with carrier wavenumber K and sideband
wavenumbers K t .1. Clearly .1 is the tone spacing. Here 7) is the relative amplitude of the carrier and
m is the modulation index. By assuming an appropriate form for the electric field amplitude.

u(x, k) - Fo)(x) e"" 2)'x . - Bx) e - 2mK

- I(- - .1I~x
+ B0(x) e - i(M' 2 )x '

- Bx)e 2 (22)

4
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in the vicinity of the primary Bragg resonance defined by

k = K/2 (23)
the following vector coupled mode equations (24) result under suitable approximations. These include
small or moderate amplitudes (1 < 0.5, m <1) and relatively closely spaced tones (A < K/ 4 ) as
discussed in [25,26].

F'- ia8£ iX9a

-B'- i8a _B - i X" F (24)

where

_

F [F1 B

an 8 1 ~ 8~- 00
8F 1 801 8B 0 800

S0 81

:: and " .

89 - Ak 0c)- K/2 8- 80 -a
X_ - X. = "qm /16 X' - "q €/8,

The prime ) indicates differentiation with respect to x and the dagger esio denotes the Hermitean
transpose. A constant loss can be added by letting 80 and o r become complex

By applying the appropriate boundary conditions at the slab ends,

F(o) - (11 FMt - [1! (25)

R(0) - R10 0 B (1) -(

the problem is completely specifiedn Here the asterisk s denotes complex conjugate and the last
exprones E e the reflection matrix R while t second expression defines the scalar
transmission coefficient . It is preferable to reformulate the above two-point boundary-value problem,defined by Eqs. (23)-(24), into an initial-value problem for the reflection matrix to avoid problems of

I'i numerical instability or formidable algebra. This leads to the matrix Riccati equation

R' -iX + i8FR +iRg + i(RX1) R (26)

w i t h i n i t i a l c o n d i t i o n R O 0 0 0 .( 7

This formulation is particularly amenable to numerical solution and can be used for any number of
tones. A result for the three tone case corresponding to (21) is shown in Fig. 2. Here the scalar
reflection A is given by

A - RR" (28)

5 S



and is plotted for a single value of normalized coupling

/(X0) 2 + [(X - + X)112 = 2 (29)

as a function of normalized frequency f = 2Ak/ for various tone spacings and losses. Note particu-
larly the large peak at the primary Bragg resonance defined by Eq. (23), or f 0, and the secondary
Bragg resonances at

k = (K + A)/2. (30)
V -.

These results suggest the following observations:

(1) For widely spaced tones (bottom plots of Fig. 2), the carrier and modulation frequencies
tend to act independently. Indeed, this can be shown mathematically since the vector
coupled mode equations separate into three scalar coupled mode equations. -•

(2) For closely spaced tones (top plots of Fig. 2), the action of the various tones is no longer
independent but these plots are suggestive of the rational function reflection coefficients
displayed in 17,8,91.

For these reasons it is natural to examine these two classes separately in the inverse problem. For
widely spaced tones, use of resonance theory seems to be the most promising approach while for closely
spaced tones the use of Gel'fand-Levitan-Marchenko theory appears to be most promising. In this way
the two methods complement each other so that a wide range of almost periodic media may be charac-
terized.

III. INVERSION METHODS FOR ALMOST PERIODIC MEDIA

A. Widely Spaced Tones

For extremely widely spaced tones (A >> ,) in which the tones act inderendently, the results of
scalar coupled mode theory can be used in the vicinity of each Bragg resonance. For example, if an N
tone medium is defined by

_-- I 1n, K, cos KiX
i-i (0 x< I)

q(x) (31)
0 (x < 0, x > I)

where 1K1 - Kl << Ki or K1 (i, j - 1, 2, ... N), then the scalar reflection R, in the vicinity of
k - K,/2 is given by [311

iK,l
R, - o -(32)

where

S 1i K,1 8  (33)

8" k - K,/ 2 . (34)

The peak value is

ORma, - tanh ()(,1) (35)
which can be inverted to get all of the X,/s. The placement of the peak gives the values of the ,K,'s.

6



If the combination XI is not desired, but instead the values for both X, and I are to be deter-

mined, one needs to examine the Bragg resonances at the sum and difference wavenumbers defined by

k - -. m K1 /2 k n K2/2 -- p K3/2 ± ... (36)

where m, n, p, ... are positive integers or zero. As the simplest example, we briefly consider the two-
tone care where N =- 2 in Eq. (31). Then in addition to the values of K1, K 2 and )< and X2 one can
look at the sum and difference resonances which. occur at k = (K 2 + K 2 )/ 2 and k = 1K2 - K.:/2 respec-
tively. The peak values of the reflection coefficient here are determined by second order coupled mode
theory as described in [32). The result is .

IRsumlmx = tanh (Xsum/) (37)

and

IRdifflmax = tanh (Xdiffi) (38)

where I

Xsum = 11 12 (KI + K 2 )/8 (39)

Xdif = 171 '12 1KI - K2 13/2 (K1 + K 2 ). (40)

By using these values of 21, Xsum / and Xdiff' from Eqs. (32), (37) and (38), the values of Th. 12,

and Ican be found using Eqs. (33), (39) and (40). In this way the original potential function q(x) has
been reconstructed up to a relative phase between periodicities.

Referring to rig. 3 the steps for reconstructing the two tone potential are as follows:

(i) Find the primary maxima evidenced by large reflections and evaluate K1 . K2 , )(1 and X2/

from the reflection coefficient plot and Eq. (35).

(ii) Find the secondary maxima at k = JK 2 ± K11/2 and find Xsum' and Xdiffl from Eqs. (37)-
(38). Calculate "i, 112 and I from Eqs. (33), (39) and (40).

The method can be extended to the three-tone modulated periodicity of (21) and to potentials with an
arbitrary number of tones.

The criterion for the applicability of this method is that the tones are separated sufficiently so that
they act independently. This occurs when the bandgaps due to each periodicity are spaced in frequency
so that they do not coalesce. This condition is described by the relative balance of the periodicity
amplitudes with the wavenumbers as expressed by

I,11 2 << 16 IK-Ki (, j - 1, 2 ... N, i ; j). (41) w

B. Closely Spaced Tones

If the tones are closely spaced so that condition (41) does not hold, then the simplified expression
(Eq. (32)) for the reflection coefficient cannot bt used. The traditional approach of iterating between
the direct problem, via the matrix Riccati equation, and the experimental data leads to formidable alge-
bra and a problem of physical interpretation. Alternatively, the inverse problem for closely spaced
tones can be approached by observing that the graph of Ir(k)1 2 for a rational reflection coefficient with
zeros as well as poles resembles the behavior of the scalar reflection ?

2 for reflection from an almost-
periodic medium with three closely spaced tones (Fig. 2, second plot, 8 - 2X, LI - 0.4). The band-
pass characteristics of the almost-periodic reflection coefficient in the vicinity of the central Bragg reso-
nance suggests that poles on the unit circle (Butterworth poles) could be used as a first approximation.
The number of "sidelobes" of jr(k)12 will be determined by the number of zeros. The rapid damping
of Ir(k)1 2 as k - cc can be accounted for by absorption in the inhomogeneous region.

7



Combining these observations suggests that a rational reflection coefficient with the form

k1kk, k -A,r~k) == (42)-r I  (k- k) (k- k2 ) (k- k3)

where the locations of the poles, ki, k2, k3, and the zero, A,, in the complex k-plane will be chosen to
meet the requirement for energy conservation, Eq. (5), as well as approximating the almost-periodic
reflection coefficient. This particular choice for r(k) was obtained by combining the results of the solu-
tions to two different inverse scattering problems; namely, the case of the reflection coefficient, rs(k),
due to a complex potential function [331 and the case of a 2-pole Butterworth function reflection =
coefficient, rB(k) 181. Thus we write r(k) as

r(k) = rB(k) • rr(k) (43)

where

rB(k) - kjk 2
(k - k1 ) (k- k 2)

and
rh(k) ffi k k-I

IA I k - k3

Here we set

k 2 k2 (1--k*

k3 = ia /. = i(a +8) (0 < 8 << a)

so that

1 a 2  k2 + (a + 8)2

k4 + a+ 8) 2  k2 -+ a2

which has the general characteristics of the plot of A 2 being considered. These analytical results will aid
in the solution of the inverse problem for almost periodic media, this physical model can be interpreted
as an inhomogeneous medium whose effective permittivity has dispersive and dissipative characteristics
which we now determine.

Applying the analysis of [331 for potentials with weak absorption, we write

4(x) - qg(x) + [qh(x) + ikpr(x)] cos Kx (45)
where 4W(x) is the effective complex profile function for almost periodic medium. Using the method of
(81 on the rs(k) of (43), we find

qx) - (46)
(I + I'X/2x

using the method of [331 on rr(k), we find

qh(x) - 2 [RA(2x)]' [F(x)J + 3 [R,(2x)12 [F(x)14  (47)

ph(x) - R4(2x) IF(2x)12  
(48)

where

a 8(l -8) ea"1 - " "  (x > 0) 0
R4(x) - (49)

0 (x < O)

8



Fx) = 11 - b e-2 (I -1-1 - 2 (50)

The inverse scattering method has been demonstrated with a reflection coefficient with three poles -
and one zero. More complicated pole-zero configuration can be used to obtain closer agreement with
the experimental Ir(k)12 and to model profiles with more tones. Losses in the dielectric region are
readily included in the inversion method by poles and zeros on the positive imaginary axis.

IV. DISCUSSION

Inverse scattering theory has been used to determine the permittivity profile of a one-dimensional
inhomogeneous medium by analyzing the properties of the reflection coefficient amplitude as a function
of incident wavenumber. The problem of scattering from an almost periodic medium can be analyzed
by considering two cases which are dependent on the relative spacing of the tones.

If the reflection coefficient is composed of several widely spaced primary maxima then the reso-
nance method for widely spaced tones should be used. The number and spacing of the tones can be
determined from the number and spacing of the reflection maxima. A check on these tone characteris-
tics can be made by examining secondary maxima. The length and amplitude of the various perturba-
tions can be found from the heights of the various relative maxima of the reflection data.

If the reflection coefficient is composed of closely spaced maxima, then the complementary inver-
sion method must be used. Here the reflection coefficient is approximated by a rational function of

wavenumber with respect to the principal maxima. The number of poles and zeros of this reflection
coefficient function and their location in complex wavenumber space are varied until this function
approximates the reflection data. Then using the inversion algorithm of Kay, based on the work of
Gel'fand, Levitan and Marchenko, the potential or permittivity is reconstructed.

Future work will be concerned with the more accurate approximation of reflection data and with
finding the sensitivity of these methods to reflection data errors.
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Fig. I - IDEALIZED PHYSICAL MODEL One dimensional scattering of a time-harmonic wave

of unit amplitude from a half space characterized by (lk, x)
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Fig. 2 - REFLECTION COEFFICIENTS FOR THREE
TONE ALMOST PERIODIC IMEDIUM. Plots of scalarI
reflection A as a function of normalized frequency]. for v'ari-
ous tone spacings .1 for a three-tone slab of length / as
described by (21) The tone spacings are 8 - 0, 2X. 4k, 6k,
and 8)( top to bottom isec text) and the relative loss is LI.
Therefore, the top two plots represent closely spaced tones
while the bottom two plots display tones of moderate or wide
spacing. The modulation is constant (m - 1) and X1 1 2
Adapted from [271.
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0 PRIMARY
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Fig 3 - TWO TONE REFLECTION COEFFICIENT. For moderate or widely spaced tones with
wavenumber K, and K2. primary Bragg resonances occurs at k - K/ 2 and K2/2. Secondary resonance

occurs at subharmonic and superharmonic wavenumbers as shown.
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